serene/include/serene/exprs/expression.h

148 lines
5.2 KiB
C++

/* -*- C++ -*-
* Serene Programming Language
*
* Copyright (c) 2019-2021 Sameer Rahmani <lxsameer@gnu.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef EXPRS_EXPRESSION_H
#define EXPRS_EXPRESSION_H
#include "serene/context.h"
#include "serene/errors/error.h"
#include "serene/exprs/traits.h"
#include "serene/reader/location.h"
#include "serene/utils.h"
#include <memory>
#include <mlir/IR/BuiltinOps.h>
namespace serene {
/// Contains all the builtin AST expressions including those which do not appear
/// in the syntax directly. Like function definitions.
namespace exprs {
class Expression;
using Node = std::shared_ptr<Expression>;
using ErrorPtr = std::shared_ptr<errors::Error>;
// tree? Yupe, Errors can be stackable which makes a vector of them a tree
using ErrorTree = std::vector<ErrorPtr>;
using MaybeNode = Result<Node, ErrorTree>;
using Ast = std::vector<Node>;
using MaybeAst = Result<Ast, ErrorTree>;
static auto EmptyNode = MaybeNode::success(nullptr);
/// The base class of the expressions which provides the common interface for
/// the expressions to implement.
class Expression {
public:
/// The location range provide information regarding to where in the input
/// string the current expression is used.
reader::LocationRange location;
Expression(const reader::LocationRange &loc) : location(loc){};
virtual ~Expression() = default;
/// Returns the type of the expression. We need this funciton to perform
/// dynamic casting of expression object to implementations such as lisp or
/// symbol.
virtual ExprType getType() const = 0;
/// The AST representation of an expression
virtual std::string toString() const = 0;
/// Analyzes the semantics of current node and return a new node in case
/// that we need to semantically rewrite the current node and replace it with
/// another node. For example to change from a List containing `(def a b)`
/// to a `Def` node that represents defining a new binding.
///
/// \param ctx is the context object of the semantic analyzer.
virtual MaybeNode analyze(SereneContext &ctx) = 0;
/// Genenates the correspondig SLIR of the expressoin and attach it to the
/// given module.
///
/// \param ns The namespace that current expression is in it.
/// \param m The target MLIR moduleOp to attach the operations to
virtual void generateIR(serene::Namespace &ns, mlir::ModuleOp &m) = 0;
};
/// Create a new `node` of type `T` and forwards any given parameter
/// to the constructor of type `T`. This is the **official way** to create
/// a new `Expression`. Here is an example:
/// \code
/// auto list = make<List>();
/// \endcode
///
/// \param[args] Any argument with any type passed to this function will be
/// passed to the constructor of type T.
/// \return A unique pointer to an Expression
template <typename T, typename... Args>
Node make(Args &&...args) {
return std::make_shared<T>(std::forward<Args>(args)...);
};
/// Create a new `node` of type `T` and forwards any given parameter
/// to the constructor of type `T`. This is the **official way** to create
/// a new `Expression`. Here is an example:
/// \code
/// auto list = makeAndCast<List>();
/// \endcode
///
/// \param[args] Any argument with any type passed to this function will be
/// passed to the constructor of type T.
/// \return A unique pointer to a value of type T.
template <typename T, typename... Args>
std::shared_ptr<T> makeAndCast(Args &&...args) {
return std::make_shared<T>(std::forward<Args>(args)...);
};
/// The helper function to create a new `Node` and use that as the success case
// of a `Result`. It should be useds where every we want to return a `MaybeNode`
/// successfully
template <typename T, typename... Args>
Result<Node, ErrorTree> makeSuccessfulNode(Args &&...args) {
return Result<Node, ErrorTree>::success(make<T>(std::forward<Args>(args)...));
};
/// The hlper function to create an Errorful `Result<T,...>` (`T` would be
/// either
/// `Node` or `Ast` most of the time) with just one error creating from passing
/// any argument to this function to the `serene::errors::Error` constructor.
template <typename T, typename... Args>
Result<T, ErrorTree> makeErrorful(Args &&...args) {
std::vector<ErrorPtr> v{
std::move(makeAndCast<errors::Error>(std::forward<Args>(args)...))};
return Result<T, ErrorTree>::error(v);
};
/// Convert the given AST to string by calling the `toString` method
/// of each node.
SERENE_EXPORT std::string astToString(const Ast *);
/// Converts the given ExprType to string.
std::string stringifyExprType(ExprType);
/// Converts the given AST to string and prints it out
void dump(Ast &);
} // namespace exprs
} // namespace serene
#endif